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Motivation & Introduction



Computability/Complexity of Real Numbers

Which (real) numbers can we compute?

Given a (new) computational model, this is a simple yet
profound question to ask.

• Turing (1936): computable real numbers on Turing
Machines.

• Yamada (1962): Do that fast, please. (Real-time
computability)

• Hartmanis & Stearns (1965): no can do, square root of two.
(open conjecture)
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Why We Care?

By answering questions like these, we can

• Showcase the power of our computational model.
• Guide algorithm design. Although the questions are
purely theoretical, it is complicated enough to require
sophisticated algorithm designs, which can be applied to
more practical problems.

• Better yet, give theoretical boundary of the computational
model. (Identify “mission impossible”.)

Today, we are going to advance our knowledge of the
complexity of real numbers in the analog chemical reaction
networks (CRNs) model.
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CRNs and GPACs in a Nutshell

A CRN is an abstract mathematical model of how chemicals
interact in a well-mixed volume.

Hydrazine Combustion

3N2H4 −−→ 4NH3 + N2
N2H4 −−→ N2 + 2H2

4NH3 + N2H4 −−→ 3N2 + 8H2
2H2 + O2 −−→ 2H20

Abstract CRN

3A −−→ 4B+ C
A −−→ C+ 2D

4B+ A −−→ 3C+ 8D
2D+ E −−→ 2F
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CRNs and GPACs In A Nutshell

The General Purpose Analog Computer (GPAC) is an analog
computer model first introduced in 1941 by Claude Shannon.

For simplicity, we can view both GPACs and CRNs as
polynomial initial value problems (PIVPs):

GPAC/ODE
dxi(t)

dt = x′i = pi(x1, · · · , xn),

for i = 1, 2, · · · ,n,
where pi’s are polynomials.

CRN/ODE1

x′i = pi(x1, · · · , xn)− qi(x1, · · · , xn)xi,
for i = 1, 2, · · · ,n,

where pi’s and qi’s are polynomials
with positive coefficients.

1Vera Hars and Jánós Tóth: On the Inverse Problem of Reaction Kinetics,
1979.
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CRNs and GPACs

By the previous definition, CRNs are restricted GPACs. In terms
of ODEs that they induce, we have

CRN/ODE

GPAC/ODE

.

CRN

x ′ = 1− x.

GPAC but not CRN

x ′ = 1− x,
y ′ = 1− x .

The intuition: for CRNs, no participation⇒ no destruction.
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Computable Real Numbers

Computable real numbers in discrete models:

1. In Turing’s revolutionary 1936 paper, he defined a notion
of a computable real number.
A number α ∈ R is computable, if there exists a Turing
machine (with no input) that prints the binary expansion
of α to an output tape.

2. Thus, the real number written on the output tape
converges to α in the limit.

Inspired by the above notion, in analog models (GPAC/CRN),
we can designate a variable x, such that

lim
t→∞

x(t) = α.

And then we say x computes α.
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GPAC/CRN computable numbers

Compute
√
2 in the limit:

1 2 3 4
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1.2

1.4

But how fast does it converge to
√
2? 7



Real-Time Computable Real-Numbers

In 1962, Yamada introduced a notion of computing a number
α ∈ R in real time.2

Has been proven3 to be equivalent to computing α in linear
time, i.e., printing n bits takes O(n)-time. That is, getting an
O(2−n)-approximation in O(n)-time.

Similarly, in CRNs/GPACs, to define real-time computability, we
can require our designated variable x(t) such that

|x(t)− α| < O(2−t).

2Yamada, Hisao. “Real-time computation and recursive functions not
real-time computable.” IRE Transactions on Electronic Computers 6 (1962):
753-760.
3Lipton RJ (2017) Why the Hartmanis–Stearns conjecture is still open, 2012.
Blog post. Retrieved 3 Feb from https://rjlipton.wordpress.
com/2012/06/15/why-the-hartmanis-stearns-conjecture-is-still- open/ 8
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Real-Time CRN Computable Reals

α ∈ R is real-time CRN-computable (resp., GPAC-computable),
and we write α ∈ RRTCRN (resp., α ∈ RRTGPAC), if there exist an
(integral) PIVP problem induced by a CRN (resp. GPAC) and a
variable x(t) in the system with the following properties:

1. (zero initial values). For all variable x(t), x(0) = 0. (This
can be relaxed to integral values.)

2. (boundedness). There is a constant β > 0 such that, for
all variable x(t) and t ∈ [0,∞),

x(t) ≤ β.

3. (real-time convergence).

|x(t)− |α|| ≤ O(2−t).

9
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Previous Results

We4 previously showed that

Theorem
All algebraic real numbers are in RRTCRN.

Theorem
Some transcendental numbers are in RRTCRN.

• Two (ugly) numbers u,v, such that u− v = e.
• Did not know how to prove subtraction can be done in
real time.

• Did not know RRTCRN is a field. Hard to compute real
numbers in general because of lack of field structure.

4Xiang Huang, Titus H. Klinge, James I. Lathrop, Xiaoyuan Li, and Jack H. Lutz.
“Real-time computability of real numbers by chemical reaction networks.”
Natural Computing 18.1 (2019): 63-73.
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New Results Today

Today, We discuss the following results:

1. RRTCRN is a field. In particular, subtraction can be done in
real time.

2. RRTCRN is equivalent to the class RRTGPAC of real-time
computable real numbers by general purpose analog
computers (GPACs).

3. RRTCRN contains the transcendental numbers e and π.
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Implications

1. RRTCRN is a field:
• modularize/reuse your CRN algorithms.

2. RRTCRN = RRTGPAC:
• One can implement an algorithm by a GPAC, which is
simpler in form. Then compile it into a CRN.

• It greatly simplifies the proof that a number α ∈ RRTCRN.

3. e, π ∈ RRTCRN: the field RRTCRN is not boring.
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RRTCRN is a Field



Closure Under Addition, Multiplication

Lemma (Addition)
If α, β ∈ RRTCRN, then α+ β ∈ RRTCRN.

Lemma (Multiplication)
If α, β ∈ RRTCRN, then αβ ∈ RRTCRN.

13



Subtraction Is Hard

Assume A(t), B(t) computes α, β, resp. Then C(t) in the
following CRN/ODE5, 6 computes α− β.

Subtraction CRN

A −−→ A+ C
B −−→ B+ H
C −−→ ∅

C+ H −−→ ∅

Subtraction ODE

C′ = A− CH− C (1)
H′ = B− CH (2)

However, it is hard to prove exponential rate of convergence.
5Buisman, H.J. et al.: Computing algebraic functions with biochemical
reaction networks, 2009.
6Marko Vasic, David Soloveichik, and Sarfraz Khurshid: CRN++: Molecular
Programming Language, 2018. 14



A Convergence Lemma

Let f(t) be a function that converges to α ∈ R exponentially
fast, that is, there exist constants τ and γ such that for all
t ∈ [τ,∞)

|f(t)− α| ≤ e−γt

Lemma (Reciprocal Convergence)
If x(t) is a function that satisfies

dx
dt

= 1− f(t) · x,

then x(t) converges to 1
α exponentially fast.

Lemma (Reciprocal)
If α ∈ RRTCRN, then 1

α ∈ RRTCRN.

15



Subtraction: Two Reciprocals for One Subtraction

Lemma (Subtraction)
If α, β ∈ RRTCRN and α > β > 0, then α− β ∈ RRTCRN.

Proof Sketch
Let x, y computes α, β in real time.

Construct an CRN/ODE for a new variable z such that

z ′ = 1− (x− y)z

Let f(t) = x(t)− y(t), apply reciprocal convergence lemma, and
use closure under reciprocal.

Moreover, z is solvable and easy to analyze.

16



RRTCRN is a Field

Theorem
RRTCRN is a field.

Proof.
This follows immediately by closure under addition,
subtraction, multiplication, and reciprocal.

17



RRTCRN = RRTGPAC



Proof that RRTCRN = RRTGPAC

Theorem
RRTCRN = RRTGPAC

Proof (⊆).
CRNs are special forms of GPACs.

The backward direction is the non-trivial direction. We need to
use a soup-up version of the following theorem.

18
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Simulating a GPAC with a CRN

Theorem (Difference Encoding7)
Given a GPAC A, there is a CRN N that for each variable x in A,
there are two variables x1 and x2 in N such that

x(t) = x1(t)− x2(t) pointwise for every t ≥ 0.

This means we can compile a GPAC into a CRN.

We use a similar construction. Moreover, we also show that if
x(t) is bounded, then x1 and x2 are also bounded.
7François Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury Pouly.
“Strong turing completeness of continuous chemical reaction networks and
compilation of mixed analog-digital programs.” International Conference on
Computational Methods in Systems Biology. Springer, Cham, 2017.

19



Example: Difference Encoding

The function v(t) = sin(t) can be implemented by the top-left
GPAC/ODE, and encoded by v1(t)− v2(t) in the bottom-left
CRN/ODE.

GPAC/ODE
u′ = v
v′ = 1− u

CRN/ODE

u ′
1 = v1 − u1u2
u ′
2 = v2 − u1u2
v ′
1 = 1+ u2 − v1v2
v ′
2 = u1 − v1v2

Plot: sin(t) = v1(t)− v2(t) 20



The Rest of The Proof

CRN/ODE

GPAC/ODE

N , x1 − x2 = x

A, x

N̂ , x̂ ≈ x

• Let x in A computes α in real time.
• Now the CRN N encodes x by two variables x1 − x2.

• Can we do it in one single variable?
• Yes. By two applications of the reciprocal lemma, we get N̂ .

• By x̂ ≈ x, we mean it computes the same α in real time.

21
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e and π are in RRTCRN



A General Procedure

To Compute a number α in real time by CRN, we do

1. Pick a function x(t) that converges to α exponentially fast.
(creative)

2. Implement x(t) by a GPAC. (creative)
3. Translate the GPAC into a CRN N . (automatic)
4. Lastly, turn N into N̂ . (automatic)

CRN/ODE

GPAC/ODE

N , x1 − x2 = x

A, x

N̂ , x̂ ≈ x

x(t)

22



π is in RRTCRN

Theorem
π ∈ RRTCRN.

As a first attempt, we can use the fact that

lim
t→∞

arctan(t) = π

2
.

Let
x(t) = arctan(t), y(t) = 1

1+ t2
, z(t) = t

1+ t2
.

Then we have

x ′ = y
y ′ = −2yz,
z ′ = y2 − z2.

with initial value x(0) = z(0) = 0 and y(0) = 1.

23
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π is in RRTCRN

Unfortunately, arctan(t) does not converge to π
2 fast enough.

At the second attempt, we pick the function

x(t) = arctan(1− e−t).

Since this function can be viewed as substituting t for
w(t) = 1− e−t in arctan(t), by change of variable and chain
rule, we get the following PIVP

x′ = y · w,
y′ = (−2yz) · w,
z′ = (y2 − z2) · w,
w′ = −w.

with x(0) = z(0) = w(0) = 0, y(0) = 1.
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Figure 2: Plot of π. (CRN size: 10 species and 120 reactions.)
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Thank you!
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